A cone splitting theorem for Alexandrov spaces
نویسندگان
چکیده
منابع مشابه
A Splitting Theorem for Alexandrov Spaces
A classical result of Toponogov [12] states that if a complete Riemannian manifold M with nonnegative sectional curvature contains a straight line, thenM is isometric to the metric product of a nonnegatively curved manifold and a line. We then know that the Busemann function associated with the straight line is an affine function, namely, a function which is affine on each unit speed geodesic i...
متن کاملA Convergence Theorem in the Geometry of Alexandrov Spaces
The fibration theorems in Riemannian geometry play an important role in the theory of convergence of Riemannian manifolds. In the present paper, we extend them to the Lipschitz submersion theorem for Alexandrov spaces, and discuss some applications. Résumé. Les théorèmes de fibration de la géométrie riemannienne jouent un rôle important dans la théorie de la convergence des variétés riemannienn...
متن کاملA Fixed Point Theorem for Correspondences on Cone Metric Spaces
In this paper, we prove that if f is a contractive closed-valued correspondence on a cone metric space (X, d) and there is a contractive orbit {xn} for f at x0 ∈ X such that both {xni} and {xni+1} converge for some subsequence {xni} of {xn}, then f has a fixed point, which generalizes a fixed point theorem for contractive closed-valued correspondences from metric spaces to cone metric spaces.
متن کاملTopological regularity theorems for Alexandrov spaces
Since Gromov gave in [G1], [G2] an abstract definition of Hausdorff distance between two compact metric spaces, the Gromov-Hausdorff convergence theory has played an important role in Riemannian geometry. Usually, Gromov-Hausdorff limits of Riemannian manifolds are almost never Riemannian manifolds. This motivates the study of Alexandrov spaces which are more singular than Riemannian manifolds ...
متن کاملVector ultrametric spaces and a fixed point theorem for correspondences
In this paper, vector ultrametric spaces are introduced and a fixed point theorem is given for correspondences. Our main result generalizes a known theorem in ordinary ultrametric spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 2005
ISSN: 0030-8730
DOI: 10.2140/pjm.2005.218.1